Contour integration: Difference between revisions

From Soyjak Wiki, The Free Soycyclopedia
Jump to navigationJump to search
No edit summary
No edit summary
Line 67: Line 67:
<math> \oint\limits_{H}\frac{1}{x^2+1} \mathrm{d} x= \int\limits_{-\infty}^{\infty}\frac{1}{x^2+1} \mathrm{d} x</math></blockquote>
<math> \oint\limits_{H}\frac{1}{x^2+1} \mathrm{d} x= \int\limits_{-\infty}^{\infty}\frac{1}{x^2+1} \mathrm{d} x</math></blockquote>
inside 1/(x^2+1), there is only 2 poles, where x=-i, and where x=i, inside our contour, there is only one pole, x=i, hence, using the residue theorem:
inside 1/(x^2+1), there is only 2 poles, where x=-i, and where x=i, inside our contour, there is only one pole, x=i, hence, using the residue theorem:
<math> 2\pi i \underset{x=i}{\textup{Res}} \frac{1}{x^2+1}= \int\limits_{-\infty}^{\infty}\frac{1}{x^2+1} \mathrm{d} x</math></blockquote>
 
 
<math> 2\pi i \underset{x=i}{\textup{Res}}\frac{1}{x^2+1}= \int\limits_{-\infty}^{\infty}\frac{1}{x^2+1} \mathrm{d} x</math></blockquote>
<math> 2\pi i \lim_{x \to i } \frac{(x-i)}{x^2+1}= \int\limits_{-\infty}^{\infty}\frac{1}{x^2+1} \mathrm{d} x</math></blockquote>
x^2+1=(x-i)(x+i), hence :
<math> 2\pi i \lim_{x \to i } \frac{1}{x+i}= \int\limits_{-\infty}^{\infty}\frac{1}{x^2+1} \mathrm{d} x</math></blockquote>
Setting the limit
<math> \pi = \int\limits_{-\infty}^{\infty}\frac{1}{x^2+1} \mathrm{d} x</math></blockquote>

Revision as of 15:03, 21 July 2023

The residue theorem, invented by Cauchy, is a method of evaluating definite integrals.


Consider the following contour in the complex plane :



where R is a limit going to infinity...or something


Let's find

the first half of the contour is a straight line that goes from -R to R


hence, this can be represented as, (H is the entire contour, because i said so)



the other half of the contour, , can be represented as the equation : where v is a variable that goes from to 0


differentating, we have

plugging it back into our original integrals


if we set :

Now take the absolute value

from the triangle inequality for integrals :

It's known that if z is real, then

thus :

Using the triangle inequality :

Since there is no more v, we can move the thing out of the integral, or so i think

If we set a limit with R go to infinity :

letting the limit go, we get

Since the absolute value of something is always greater than 0 unless its 0, then P=0, this gives us

We can let R go to infinity

inside 1/(x^2+1), there is only 2 poles, where x=-i, and where x=i, inside our contour, there is only one pole, x=i, hence, using the residue theorem:


Failed to parse (unknown function "\textup"): {\displaystyle 2\pi i \underset{x=i}{\textup{Res}}\frac{1}{x^2+1}= \int\limits_{-\infty}^{\infty}\frac{1}{x^2+1} \mathrm{d} x}

x^2+1=(x-i)(x+i), hence :

Setting the limit