Contour integration: Difference between revisions

From Soyjak Wiki, The Free Soycyclopedia
Jump to navigationJump to search
No edit summary
m (WillyOffWheels moved page Contour integration on wheels to Contour integration over a redirect without leaving a redirect)
 
(31 intermediate revisions by 10 users not shown)
Line 1: Line 1:
The residue theorem, invented by Cauchy, is a method of evaluating definite integrals.
{{Ruby}}
In mathematics, '''contour integration''', invented by [[wikipedia:Augustin-Louis_Cauchy|Augustin-Lous Cauchy]], is a method in complex analysis that can :
*evaluate definite integrals (residue theorem)
*find location of poles and zeroes of a function (argument principle )
*give upper and lower bounds for integrals (ML inequality)
{{corner|br|[[File:Chudblackboard.png|frameless]]}}


It is a mandatory course in [[TND]] school.
'''note''' : I half assed this page and it may contain some errors
Example


Consider the following contour in the complex plane :
Consider the following contour in the complex plane :
Line 8: Line 20:




where R is a limit going to infinity...or something
where R is a limit going to infinity...[[Amerimutt|or something]]




Line 15: Line 27:
<math>\int\limits_{-\infty}^{\infty} \frac{1}{x^2+1} \mathrm{d} x</math></blockquote>
<math>\int\limits_{-\infty}^{\infty} \frac{1}{x^2+1} \mathrm{d} x</math></blockquote>
the first half of the contour is a straight line that goes from -R to R
the first half of the contour is a straight line that goes from -R to R
hence, this can be represented as, (H is the entire contour, because i said so)
hence, this can be represented as, (H is the entire contour, because i said so)
<math> \oint\limits_{H}\frac{1}{x^2+1} \mathrm{d} x=\int\limits_{\gamma_R}\frac{1}{x^2+1} \mathrm{d} x+\int\limits_{R}^{R}\frac{1}{x^2+1} \mathrm{d} x</math></blockquote>
 
<math> \oint\limits_{H}\frac{1}{x^2+1} \mathrm{d} x=\int\limits_{\gamma_R}\frac{1}{x^2+1} \mathrm{d} x+\int\limits_{-R}^{R}\frac{1}{x^2+1} \mathrm{d} x</math></blockquote>




Line 33: Line 48:
plugging it back into our original integrals
plugging it back into our original integrals


<math> \oint\limits_{H}\frac{1}{x^2+1} \mathrm{d} x=\int\limits_{\pi}^{0} \frac{Rie^{iv} \mathrm{d} v}{(Re^{iv})^2+1} +\int\limits_{R}^{R}\frac{1}{x^2+1} \mathrm{d} x</math></blockquote>
<math> \oint\limits_{H}\frac{1}{x^2+1} \mathrm{d} x=\int\limits_{\pi}^{0} \frac{Rie^{iv} \mathrm{d} v}{(Re^{iv})^2+1} +\int\limits_{-R}^{R}\frac{1}{x^2+1} \mathrm{d} x</math></blockquote>




if we set :
if we set :
<math> P=\int\limits_{\pi}^{0} \frac{Rie^{iv} \mathrm{d} v}{(Re^{iv})^2+1}</math></blockquote>
 
<math> P=\int\limits_{\pi}^{0} \frac{Rie^{iv} \mathrm{d} v}{R^2e^{2iv}+1}</math></blockquote>
 
Now take the absolute value
Now take the absolute value
<math> |P|=|\int\limits_{\pi}^{0} \frac{Rie^{iv} \mathrm{d} v}{(Re^{iv})^2+1}|</math></blockquote>
 
<math> |P|=|\int\limits_{\pi}^{0} \frac{Rie^{iv} }{R^2e^{2iv}+1}\mathrm{d} v|</math></blockquote>
 
from the triangle inequality for integrals :
 
<math> |P|\le \int\limits_{\pi}^{0} | \frac{Rie^{iv} }{R^2e^{2iv}+1}|\mathrm{d} v</math></blockquote>
 
 
 
 
 
 
<math> |P|\le \int\limits_{\pi}^{0}  \frac{R|e^{iv}| }{|R^2e^{2iv}+1|}\mathrm{d} v</math></blockquote>
 
It's known that if z is real, then
 
<math>|e^{iz}|=1</math></blockquote>
 
thus :
 
<math> |P|\le \int\limits_{\pi}^{0}  \frac{R }{|R^2e^{2iv}+1|}\mathrm{d} v</math></blockquote>
 
Using the triangle inequality :
 
<math> |P|\le \int\limits_{\pi}^{0}  \frac{R }{|R^2e^{2iv}|+|1|}\mathrm{d} v</math></blockquote>
 
 
 
 
 
 
<math> |P|\le \int\limits_{\pi}^{0}  \frac{R }{|R^2| +|1|}\mathrm{d} v</math></blockquote>
 
Since there is no more v, we can move the thing out of the integral, or so i think
 
<math> |P|\le \frac{-R \pi }{R^2 +1}</math></blockquote>
 
 
If we set a limit with R go to infinity :
 
 
 
<math> |P|\le \lim_{R \to \infty} \frac{-R\pi }{R^2 +1}</math></blockquote>
 
 
 
<math> |P|\le \lim_{R \to \infty} \frac{-\pi }{R +1/R}</math></blockquote>
 
letting the limit go, we get
 
<math> |P|\le 0</math></blockquote>
 
 
Since the absolute value of something is always greater than 0 unless its 0, then P=0, this gives us
 
<math> \oint\limits_{H}\frac{1}{x^2+1} \mathrm{d} x= \int\limits_{-R}^{R}\frac{1}{x^2+1} \mathrm{d} x</math></blockquote>
 
We can let R go to infinity
 
<math> \oint\limits_{H}\frac{1}{x^2+1} \mathrm{d} x= \int\limits_{-\infty}^{\infty}\frac{1}{x^2+1} \mathrm{d} x</math></blockquote>
 
inside 1/(x^2+1), there is only 2 poles, where x=-i, and where x=i, inside our contour, there is only one pole, x=i, hence, using the residue theorem:
 
 
<math> 2\pi i \underset{x=i}{Res}\frac{1}{x^2+1}= \int\limits_{-\infty}^{\infty}\frac{1}{x^2+1} \mathrm{d} x</math></blockquote>
 
 
 
 
<math> 2 \pi i \lim_{x \to i } \frac{(x-i)}{x^2+1}= \int\limits_{-\infty}^{\infty}\frac{1}{x^2+1} \mathrm{d} x</math></blockquote>
 
 
x^2+1=(x-i)(x+i), hence :
 
<math> 2\pi i \lim_{x \to i } \frac{1}{x+i}= \int\limits_{-\infty}^{\infty}\frac{1}{x^2+1} \mathrm{d} x</math></blockquote>
 
Setting the limit
 
<math> \pi = \int\limits_{-\infty}^{\infty}\frac{1}{x^2+1} \mathrm{d} x</math></blockquote>
 
mathGODS won

Latest revision as of 18:51, 2 January 2024

This page is a ruby.

In mathematics, contour integration, invented by Augustin-Lous Cauchy, is a method in complex analysis that can :

  • evaluate definite integrals (residue theorem)
  • find location of poles and zeroes of a function (argument principle )
  • give upper and lower bounds for integrals (ML inequality)

It is a mandatory course in TND school.


note : I half assed this page and it may contain some errors


Example

Consider the following contour in the complex plane :



where R is a limit going to infinity...or something


Let's find

the first half of the contour is a straight line that goes from -R to R


hence, this can be represented as, (H is the entire contour, because i said so)



the other half of the contour, , can be represented as the equation : where v is a variable that goes from to 0


differentating, we have

plugging it back into our original integrals


if we set :

Now take the absolute value

from the triangle inequality for integrals :




It's known that if z is real, then

thus :

Using the triangle inequality :




Since there is no more v, we can move the thing out of the integral, or so i think


If we set a limit with R go to infinity :



letting the limit go, we get


Since the absolute value of something is always greater than 0 unless its 0, then P=0, this gives us

We can let R go to infinity

inside 1/(x^2+1), there is only 2 poles, where x=-i, and where x=i, inside our contour, there is only one pole, x=i, hence, using the residue theorem:





x^2+1=(x-i)(x+i), hence :

Setting the limit

mathGODS won