Contour integration: Difference between revisions

From Soyjak Wiki, The Free Soycyclopedia
Jump to navigationJump to search
No edit summary
m (WillyOffWheels moved page Contour integration on wheels to Contour integration over a redirect without leaving a redirect)
 
(23 intermediate revisions by 8 users not shown)
Line 1: Line 1:
The residue theorem, invented by Cauchy, is a method of evaluating definite integrals.
{{Ruby}}
In mathematics, '''contour integration''', invented by [[wikipedia:Augustin-Louis_Cauchy|Augustin-Lous Cauchy]], is a method in complex analysis that can :
*evaluate definite integrals (residue theorem)
*find location of poles and zeroes of a function (argument principle )
*give upper and lower bounds for integrals (ML inequality)
{{corner|br|[[File:Chudblackboard.png|frameless]]}}


It is a mandatory course in [[TND]] school.
'''note''' : I half assed this page and it may contain some errors
Example


Consider the following contour in the complex plane :
Consider the following contour in the complex plane :
Line 8: Line 20:




where R is a limit going to infinity...or something
where R is a limit going to infinity...[[Amerimutt|or something]]




Line 40: Line 52:


if we set :
if we set :
<math> P=\int\limits_{\pi}^{0} \frac{Rie^{iv} \mathrm{d} v}{R^2e^{2iv}+1}</math></blockquote>
<math> P=\int\limits_{\pi}^{0} \frac{Rie^{iv} \mathrm{d} v}{R^2e^{2iv}+1}</math></blockquote>
Now take the absolute value
Now take the absolute value
<math> |P|=|\int\limits_{\pi}^{0} \frac{Rie^{iv} }{R^2e^{2iv}+1}\mathrm{d} v|</math></blockquote>
<math> |P|=|\int\limits_{\pi}^{0} \frac{Rie^{iv} }{R^2e^{2iv}+1}\mathrm{d} v|</math></blockquote>
from the triangle inequality for integrals :
from the triangle inequality for integrals :
<math> |P|\le |\int\limits_{\pi}^{0} | \frac{Rie^{iv} }{R^2e^{2iv}+1}|\mathrm{d} v</math></blockquote>
 
<math> |P|\le |\int\limits_{\pi}^{0}  \frac{R|e^{iv}| }{|R^2e^{2iv}+1|}\mathrm{d} v</math></blockquote>
<math> |P|\le \int\limits_{\pi}^{0} | \frac{Rie^{iv} }{R^2e^{2iv}+1}|\mathrm{d} v</math></blockquote>
 
 
 
 
 
 
<math> |P|\le \int\limits_{\pi}^{0}  \frac{R|e^{iv}| }{|R^2e^{2iv}+1|}\mathrm{d} v</math></blockquote>


It's known that if z is real, then
It's known that if z is real, then
<math>|e^{iz}|=1</math></blockquote>
<math>|e^{iz}|=1</math></blockquote>
thus :
thus :
<math> |P|\le |\int\limits_{\pi}^{0}  \frac{R }{|R^2e^{2iv}+1|}\mathrm{d} v</math></blockquote>
 
<math> |P|\le \int\limits_{\pi}^{0}  \frac{R }{|R^2e^{2iv}+1|}\mathrm{d} v</math></blockquote>
 
Using the triangle inequality :
Using the triangle inequality :
<math> |P|\le |\int\limits_{\pi}^{0}  \frac{R }{|R^2e^{2iv}|+|1|}\mathrm{d} v</math></blockquote>
 
<math> |P|\le |\int\limits_{\pi}^{0}  \frac{R }{|R^2| +|1|}\mathrm{d} v</math></blockquote>
<math> |P|\le \int\limits_{\pi}^{0}  \frac{R }{|R^2e^{2iv}|+|1|}\mathrm{d} v</math></blockquote>
 
 
 
 
 
 
<math> |P|\le \int\limits_{\pi}^{0}  \frac{R }{|R^2| +|1|}\mathrm{d} v</math></blockquote>
 
Since there is no more v, we can move the thing out of the integral, or so i think
Since there is no more v, we can move the thing out of the integral, or so i think
<math> |P|\le \frac{-R \pi }{R^2 +1}</math></blockquote>
<math> |P|\le \frac{-R \pi }{R^2 +1}</math></blockquote>
If we set a limit with R go to infinity :
If we set a limit with R go to infinity :
<math> |P|\le \lim_{R \to \infty} \frac{-R\pi }{R^2 +1}</math></blockquote>
<math> |P|\le \lim_{R \to \infty} \frac{-R\pi }{R^2 +1}</math></blockquote>
<math> |P|\le \lim_{R \to \infty} \frac{-\pi }{R +1/R}</math></blockquote>
<math> |P|\le \lim_{R \to \infty} \frac{-\pi }{R +1/R}</math></blockquote>
letting the limit go, we get  
letting the limit go, we get  
<math> |P|\le 0</math></blockquote>
<math> |P|\le 0</math></blockquote>
Since the absolute value of something is always greater than 0 unless its 0, then P=0, this gives us
Since the absolute value of something is always greater than 0 unless its 0, then P=0, this gives us


<math> \oint\limits_{H}\frac{1}{x^2+1} \mathrm{d} x= \int\limits_{-R}^{R}\frac{1}{x^2+1} \mathrm{d} x</math></blockquote>
<math> \oint\limits_{H}\frac{1}{x^2+1} \mathrm{d} x= \int\limits_{-R}^{R}\frac{1}{x^2+1} \mathrm{d} x</math></blockquote>
We can let R go to infinity
We can let R go to infinity
<math> \oint\limits_{H}\frac{1}{x^2+1} \mathrm{d} x= \int\limits_{-\infty}^{\infty}\frac{1}{x^2+1} \mathrm{d} x</math></blockquote>
<math> \oint\limits_{H}\frac{1}{x^2+1} \mathrm{d} x= \int\limits_{-\infty}^{\infty}\frac{1}{x^2+1} \mathrm{d} x</math></blockquote>
inside 1/(x^2+1), there is only 2 poles, where x=-i, and where x=i, inside our contour, there is only one pole, x=i, hence, using the residue theorem:
inside 1/(x^2+1), there is only 2 poles, where x=-i, and where x=i, inside our contour, there is only one pole, x=i, hence, using the residue theorem:




<math> 2\pi i \underset{x=i}{\textup{Res}}\frac{1}{x^2+1}= \int\limits_{-\infty}^{\infty}\frac{1}{x^2+1} \mathrm{d} x</math></blockquote>
<math> 2\pi i \underset{x=i}{Res}\frac{1}{x^2+1}= \int\limits_{-\infty}^{\infty}\frac{1}{x^2+1} \mathrm{d} x</math></blockquote>
 
 
 


<math> 2 \pi i \lim_{x \to i } \frac{(x-i)}{x^2+1}= \int\limits_{-\infty}^{\infty}\frac{1}{x^2+1} \mathrm{d} x</math></blockquote>
<math> 2 \pi i \lim_{x \to i } \frac{(x-i)}{x^2+1}= \int\limits_{-\infty}^{\infty}\frac{1}{x^2+1} \mathrm{d} x</math></blockquote>


x^2+1=(x-i)(x+i), hence :
x^2+1=(x-i)(x+i), hence :
<math> 2\pi i \lim_{x \to i } \frac{1}{x+i}= \int\limits_{-\infty}^{\infty}\frac{1}{x^2+1} \mathrm{d} x</math></blockquote>
<math> 2\pi i \lim_{x \to i } \frac{1}{x+i}= \int\limits_{-\infty}^{\infty}\frac{1}{x^2+1} \mathrm{d} x</math></blockquote>
Setting the limit  
Setting the limit  
<math> \pi = \int\limits_{-\infty}^{\infty}\frac{1}{x^2+1} \mathrm{d} x</math></blockquote>
<math> \pi = \int\limits_{-\infty}^{\infty}\frac{1}{x^2+1} \mathrm{d} x</math></blockquote>
mathGODS won

Latest revision as of 18:51, 2 January 2024

This page is a ruby.

In mathematics, contour integration, invented by Augustin-Lous Cauchy, is a method in complex analysis that can :

  • evaluate definite integrals (residue theorem)
  • find location of poles and zeroes of a function (argument principle )
  • give upper and lower bounds for integrals (ML inequality)

It is a mandatory course in TND school.


note : I half assed this page and it may contain some errors


Example

Consider the following contour in the complex plane :



where R is a limit going to infinity...or something


Let's find

the first half of the contour is a straight line that goes from -R to R


hence, this can be represented as, (H is the entire contour, because i said so)



the other half of the contour, , can be represented as the equation : where v is a variable that goes from to 0


differentating, we have

plugging it back into our original integrals


if we set :

Now take the absolute value

from the triangle inequality for integrals :




It's known that if z is real, then

thus :

Using the triangle inequality :




Since there is no more v, we can move the thing out of the integral, or so i think


If we set a limit with R go to infinity :



letting the limit go, we get


Since the absolute value of something is always greater than 0 unless its 0, then P=0, this gives us

We can let R go to infinity

inside 1/(x^2+1), there is only 2 poles, where x=-i, and where x=i, inside our contour, there is only one pole, x=i, hence, using the residue theorem:





x^2+1=(x-i)(x+i), hence :

Setting the limit

mathGODS won